STUDY: QUANTITATIVE ASSESSMENT OF A COMMON THRESHOLD FOR PUBLISHING OUTAGE INFORMATION Executive Summary

Benjamin Böcker, Simon Voswinkel und Christoph Weber

Outline of the study Quantitative assessment of a common threshold

Background

• REMIT requires publication of inside information which is, among others, information which "[...] would be likely to significantly affect the prices of wholesale energy products" (Article 2(1) of REMIT).

Main objective

- evaluate whether 100 MW is a robust threshold for REMIT relevance using a comprehensive, coherent and comprehensible methodology
- Enabling uniform and automatic application above which the price effect of an outage has to be deemed "significant" (publication requirements)

Methodology – Overview Evaluating the price effects of 100MW capacity outages

- Probabilistic variation of relevant time series (1)
- Statistical modelling of storage and crossborder flows (2)
- Price simulation using a fundamental electricity price model (3)

3

Methodology – Details Evaluating the price effects of 100MW capacity outages

- The probability of price effects exceeding 5% of the base price is analyzed
- Enhanced supply stack model (merit order) including effects of CHP and other must-run to determine electricity prices
- Probabilistic approach based on observations from 5 years of hourly data for demand, renewables and availabilities
- Statistical module to consider the smoothing effects of storage and transnational trade
- Large number of simulations (almost 9 million hourly realizations) to assess the price effects of outages
- Post processing to determine the probability of significant price effects

5

Installed capacities and annual demand Scenario Data and Assumptions

- Scenarios in line with MAF 2020
 - Target years: 2022, 2025 and outlook to 2030
 - Additional variation of CO₂ prices for 2025 and 2030
- Data sources:

Main Input

- Capacities: MAF and power plant database of the German regulator (BNetzA)
- Fuel / CO₂ prices: BNetzA scenarios, future market price notations (Q4 2021) and own assumptions

	2022	2025	2030
Installed capacities conventional [GW]	71.6	60.7	54.4
Installed capacities renewables [GW]	138.8	166.4	204.2
Net electricity consumption [TWh]	527	542	561
CO₂prices[€/MWh]	69	62 / 82	100 / 140

Sources:

https://www.entsoe.eu/outlooks/midterm/

 $\underline{https://www.netzausbau.de/SharedDocs/Downloads/DE/2035/SR/Szenariorahmen_2035_Genehmigung.pdf?__blob=publicationFile_productionFile_produ$

https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/start.html

6

Probability of significant price effects for a 100 MW outage Key Results

- Probabilities of significant price changes (exceeding 5% of yearly base prices) for outages of 100 MW given in the table
- Small differences between low (I) and high (h) CO₂ price
- Probability of significant price effects below 0.8% for all scenarios and technology classes

	2022	2025_I	2025_h	2030_l	2030_h
Nuclear	0.28%				
Lignite	0.28%	0.61%	0.68%	0.73%	0.61%
Hard Coal	0.18%	0.61%	0.67%	0.72%	0.58%
CCGT	0.16%	0.61%	0.68%	0.73%	0.61%
OCGT	0.00%	0.51%	0.58%	0.62%	0.50%
Wind Offshore	0.18%	0.31%	0.31%	0.36%	0.30%
Wind Onshore	0.16%	0.13%	0.13%	0.15%	0.15%
Solar	0.06%	0.06%	0.06%	0.07%	0.07%

Conclusion of the study

Study on the quantitative assessment of a common threshold

- The applied methodology enables detailed analyses of price effects considering multiple uncertainties.
- For a 100 MW outage, the probability of significant price effects is below 1% for all scenarios and technology classes.
- Results underline that the use of a 100 MW threshold is a robust approach to simplify the application of the REMIT criteria.
- The adoption of such a threshold, proposed also by other institutions, is likely to increase consistency and reliability for market participants.
- At the same time, it ensures that major events impacting the price formation on the electricity markets are still adequately reported.

HiScience GmbH

Services

- Provision of scientific models, methods and selected data for the energy industry via cloud services (direct use by customers)
- Individual services & solutions
- Consulting services

Background

- Founded mid 2021
- Spin-off from the Chair of Energy Economics (University of Duisburg-Essen)

HiScience GmbH www.hiscience.de

Dr. Benjamin Böcker benjamin.boecker@hiscience.de

Simon Voswinkel simon.voswinkel@hiscience.de

Prof. Dr. Christoph Weber christoph.weber@uni-due.de

